Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue.

نویسندگان

  • Kyu Hun Kim
  • Youngseok Oh
  • M F Islam
چکیده

Lightweight materials that are both highly compressible and resilient under large cyclic strains can be used in a variety of applications. Carbon nanotubes offer a combination of elasticity, mechanical resilience and low density, and these properties have been exploited in nanotube-based foams and aerogels. However, all nanotube-based foams and aerogels developed so far undergo structural collapse or significant plastic deformation with a reduction in compressive strength when they are subjected to cyclic strain. Here, we show that an inelastic aerogel made of single-walled carbon nanotubes can be transformed into a superelastic material by coating it with between one and five layers of graphene nanoplates. The graphene-coated aerogel exhibits no change in mechanical properties after more than 1 × 10(6) compressive cycles, and its original shape can be recovered quickly after compression release. Moreover, the coating does not affect the structural integrity of the nanotubes or the compressibility and porosity of the nanotube network. The coating also increases Young's modulus and energy storage modulus by a factor of ∼6, and the loss modulus by a factor of ∼3. We attribute the superelasticity and complete fatigue resistance to the graphene coating strengthening the existing crosslinking points or 'nodes' in the aerogel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon nanotube-bonded graphene hybrid aerogels and their application to water purification.

We present carbon nanotube (CNT)-bonded graphene hybrid aerogels that are prepared by growing CNTs on a graphene aerogel surface with nickel catalyst. The presence of bonded CNTs in the graphene aerogel results in vastly improved mechanical and electrical properties. A significant increase in specific surface area is also realized. The presence of the CNTs transforms the hybrid aerogels into a ...

متن کامل

Correction: Cartilage-inspired superelastic ultradurable graphene aerogels prepared by the selective gluing of intersheet joints.

Correction for 'Cartilage-inspired superelastic ultradurable graphene aerogels prepared by the selective gluing of intersheet joints' by Jin-Yong Hong, et al., Nanoscale, 2016, DOI: 10.1039/c6nr01986b.

متن کامل

Ultralight boron nitride aerogels via template-assisted chemical vapor deposition

Boron nitride (BN) aerogels are porous materials with a continuous three-dimensional network structure. They are attracting increasing attention for a wide range of applications. Here, we report the template-assisted synthesis of BN aerogels by catalyst-free, low-pressure chemical vapor deposition on graphene-carbon nanotube composite aerogels using borazine as the B and N sources with a relati...

متن کامل

Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose.

Carbon-based aerogels, composed of interconnected threedimensional (3D) networks, have attracted intensive attention because of their unique physical properties, such as low density, high electrical conductivity, porosity, and specific surface area. As a result, carbon-based aerogels are promising materials used as catalyst supports, artificial muscles, electrodes for supercapacitors, absorbent...

متن کامل

Electrical behaviour of native cellulose nanofibril/carbon nanotube hybrid aerogels under cyclic compression.

Hybrid aerogels consisting of cellulose nanofibers (CNF) and modified few-walled carbon nanotubes (FWCNT) are investigated under cyclic mechanical compression to explore "electrical fatigue". For this purpose the FWCNTs were hydrophilized, thus promoting their aqueous dispersibility to allow FWCNT/CNF hybrid hydrogels, followed by freeze-drying to obtain hybrid aerogels. The optimized compositi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 7 9  شماره 

صفحات  -

تاریخ انتشار 2012